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Biological inspirations for computer science

� Evolution/Genetics

� Ants behavior

� Nervous system

� Neuron

� Immune system

� Network of 
hypercolumns

Genetic Algorithms

Swarm intelligence

Neural Networks

Adaline

Self-healing networks

Neurosolver
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A solution path to a problem of rearranging blocks 
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What is a node?

� Simple units used in most neural networks 
are not adequate
�need extended functionality

� Hyper-column suggested to posses 
needed features
�Y Cajal (Noble Price, 1906), Szentágothai, 

Hubel/Wiesel (Noble Price, 1981)

�Burnod (brain modeling)

�See BlueBrain Project:
� http://bluebrainproject.epfl.ch/
� first phase finished on Nov. 26th, 2007!
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If N2 fires after N1 fired, then the connection from the upper division of N2

and to the upper division of N1 is strengthen. At the same time, the 

connection from the lower division of N1 to the lower division of N2 is 

strengthen as well.

Adaptation in the Neurosolver



Dr. Andrzej (AJ) Bieszczad 12December 10, 2007

firing sequence

If N2 fires after N1 fired, then the connection from the upper division of N2

and to the upper division of N1 is strengthen. At the same time, the 

connection from the lower division of N1 to the lower division of N2 is 

strengthen as well.

N1 N2

Adaptation in the Neurosolver
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is just for one of the branches (color intensity indicates search level of 
activity)
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N1

top viewgoal

The top view shows a search tree with many branches; the cross-section 
is just for one of the branches (color intensity indicates search level of 
activity)

G

Search along the backward chain

action potential = activity * P
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N1

top viewgoal

trigger

(dark navy color indicates a firing level of activity).

Triggering the solution
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anymore.
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N1

top viewgoal

Note, that the node that has fired is shut down; i.e., it is not active 
anymore.

Stepping through the solution path

trigger
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top view

When the node corresponding to the goal fires, it is shut down as well. In 
that way, the source of the search activity disapears: an indication that 
the goal has been achieved.

Goal attained – activity ceases

Final step in the solution path
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Maze simulator
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Experiments: simple T-maze

If food is placed consistently 
in one arm of the T, then this 
is the arm that will be 
selected by the rats in the 
subsequent runs. If the rat 
obtained food from both arms 
then it will choose the one 
that has a better trace in 
memory (higher probability).

Live rats may exhibit aberrant 
behavior under stress.
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Experiments: multiple paths

The rat selects the shortest 
path if the uniform learning is 
selected. If probabilistic 
learning is chosen, then the 
most probable path is taken: 
the path most often followed 
and rewarded in the past. 
This behavior comes from the 
fundamental characteristics of 
the Neurosolver. If a wall is 
created along the shortest 
path, then the rat reconsiders 
the plan and selects an 
alternate path backtracking as 
necessary.
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Experiments: star-shaped T-maze

The simulated rat trying to 
get all food navigates to food 
along the minimal path.

If food is removed from 
certain locations, then the rat 
will tend to move to the 
branches that provided 
consistent food-reward.
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Experiments: complex T-maze

The rat is faced with multiple 
choices (T’s) on their path to 
the food. This is a more 
challenging task to live rats. It 
also takes a longer training 
session for the artificial rat to 
build a map, and higher 
motivation to find a path to 
the food.

Live rats often fail to learn 
complex mazes
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The rat’s dilemma: Multiple choices
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Adding context
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The context mechanism in the Neurosolver

context: yellow floor context: red floor
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goal goal
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Rat maze simulator with context
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Conclusions

� In spite of dramatic simplifications in the model, similar 
behavior of the artificial rat to live rats running in mazes 
without stress

� under stress, animal behavior becomes unpredictable

� rats may get frustrated - not the Neurosolver

� the Neurosolver always selects the best solution and performs

� uses the contextual cues if available

� there is also a random selection mechanism built in to deal with 
race conditions

� Neurosolver models the mechanism for path storage and 
recovery, but does not capture many other nuances that 
control the behavior of live rats.
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TBDitF

� State space reduction

� Exploring application of functional areas

� e.g., separate storage for place cells

� place cells observed in hippocampus, but in the Neurosolver all is in one 
network mixed with hypercolumns

� Exploring new data from neuroscience

� e.g., evident plasticity (programmability) in the hippocampus brings an 
idea of neuromorphic subroutines

� the hippocampus produces maps (composed of place cells), but does not 
seem to store them

� Taxon navigation

� real-time processing

� Continuous learning

� Goal management

� Alternative implementations

� Software and hardware

� 3D model for the rat maze
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Sout Sin

TinTout

Probabilistic learning

P = Pout Pin = (Tout/Sout) (Tin/

Tout - number of transmissions of 

an action potential
Sout - total number of cases when 

a division positively influenced 
other nodes
Tin - the number of times when an 

action potential transmitted over 
the connection contributed to the 
firing of the target node
Sin - the total number of times 

when any node positively 
influenced the node.
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S

T

Probabilistic connection strength

P = T / S

S - total number of 
columnar firings

T - number of contextual 
co-activations


